Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 290(23): 5566-5580, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37634202

RESUMO

N-carbamoyl-ß-alanine amidohydrolase (CßAA) constitutes one of the most important groups of industrially relevant enzymes used in the production of optically pure amino acids and derivatives. In this study, a CßAA-encoding gene from Rhizobium radiobacter strain MDC 8606 was cloned and overexpressed in Escherichia coli. The purified recombinant enzyme (RrCßAA) showed a specific activity of 14 U·mg-1 using N-carbamoyl-ß-alanine as a substrate with an optimum activity at 55 °C and pH 8.0. In this work, we report also the first prokaryotic CßAA structure at a resolution of 2.0 Å. A discontinuous catalytic domain and a dimerisation domain attached through a flexible hinge region at the domain interface have been revealed. We identify key ligand binding residues, including a conserved glutamic acid (Glu131), histidine (H385) and arginine (Arg291). Our results allowed us to explain the preference of the enzyme for linear carbamoyl substrates, as large and branched carbamoyl substrates cannot fit in the active site of the enzyme. This work envisages the use of RrCßAA from R. radiobacter MDC 8606 for the industrial production of L-α-, L-ß- and L-γ-amino acids. The structural analysis provides new insights on enzyme-substrate interaction, which shed light on engineering of CßAAs for high catalytic activity and broad substrate specificity.


Assuntos
Agrobacterium tumefaciens , Aminoácidos , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , beta-Alanina , Amidoidrolases/genética , Amidoidrolases/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...